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Abstract—Document object detection is a challenging task due
to layout complexity and object diversity. Most of existing meth-
ods mainly focus on vision information, neglecting representative
inherent spatial-related relationship among document objects. To
capture structural information and contextual dependencies, we
propose a novel document object detector based on spatial-related
relation and vision (SRRV). It consists of three parts: vision
feature extraction network, relation feature aggregation network
and result refinement network. Vision feature extraction net-
work enhances information propagation of hierarchical feature
pyramid by adopting feature augmentation paths. Then, relation
feature aggregation network combines graph construction mod-
ule and graph learning module. Specifically, graph construction
module calculates spatial information from geometric attributes
of region proposals to encode relation information, while graph
learning module stacks Graph Convolutional Network (GCN)
layers to aggregate relation information at global scale. Both the
vision and relation features are fed into result refinement network
for feature fusion and relational reasoning. Experiments on the
PubLayNet, POD and Article Regions datasets demonstrate that
spatial relation information improves the performance with better
accuracy and more precise bounding box prediction.

Index Terms—Document object detection, spatial-related re-
lation, Graph Convolutional Network, feature representation,
document layout analysis.

I. INTRODUCTION

OCUMENT image understanding involves document
component detection and logical structure recovery in
various levels such as character-level, line-level and block-
level. Document object detection is to locate the page objects,
such as text or non-text regions, which provides foundation for
document image understanding. It could be widely applied in a
variety of applications, such as information retrieval, document
editing, text line transcription, document structure analysis.
Due to impressive feature extraction power, deep learning
network has achieved significant progress in various computer
vision tasks, such as image recognition [1], [2], semantic
segmentation [3], [4], object detection [5], [6], salient ob-
ject detection [7]-[9] and video saliency detection [10]-[12].
Recent advances in object detection, such as [13]-[17], have
accelerated the progress of document object detection.
Mainstream deep learning based methods designed for
natural scene images are adapted to explore the intrinsic
characteristics of document images [18]-[21]. Besides these
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Fig. 1. Examples of document object detection task. (red: title, green: text,
blue: figure, yellow: table, cyan: list)

computer vision (CV) based document detection methods,
some works put emphasis on combining CV based methods
and natural language processing (NLP) based methods, which
are known as multimodal networks [22], [23]. Yang et al.
[22] present an end-to-end multimodal fully convolutional
network to extract document semantic structure based on
visual features and textual features with text embedding maps.
VSR [23], as the top competitor of ICDAR Scientific Liter-
ature Parsing Competition (ICDAR-SLP) [24] in Document
Layout Recognition challenge, presents a unified multimodal
model to detect document objects by integrating both CV-
based and NLP-based branch. In VSR, the NLP-based branch
generates semantic features by parsing documents in PDFs.
The CV-based branch extracts vision features by processing
input document images. Multimodal methods might limit their
application due to expensive computational cost and lack of
multi-source information.

Generally, document objects tend to have spatial-related
relation and contextual dependencies. In Figure 1, we can
observe obvious paired dependencies among logical labeled
regions, such as table and table caption, figure and figure
caption. Successive list items have numbered or bulleted marks
and clear indentation in spatial layout. Besides, document page
objects present inherent structural reading order. The above re-
lational information works complementarily for human reading
process, which inspires us to explore contextual information
and inherent spatial relationship for boosting unimodal docu-
ment object detection.

Recent unimodal works have attempted to apply relation
information to document object detection. Li et al. [25]
propose a hybrid method combining CNN and conditional
random fields (CRF) [26] for capturing local context. The
CRF model is used for supervised clustering with unary
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and binary potentials. With impressive learning power, Graph
Convolutional Network [27], as an extension of CNN, could
aggregate information from graph nodes and their neighbors,
and achieve global information propagation.

In this paper, we propose a novel document object detection
method based on spatial-related relation and vision (SRRV)
to explore strong dependencies among objects. Particularly,
SRRV consists of three sub-networks: vision feature extrac-
tion network (VFEN), relation feature aggregation network
(RFAN) and result refinement network (RRN). Firstly, VFEN
is to generate proposal candidates and their regional visual
feature representation. Then, RFAN is to learn contextual
information and inherent structural information via stacking
GCN layers. Finally, to optimize the usage of VFEN and
RFAN, RRN is to better fuse the obtained feature representa-
tion and achieve relational reasoning to bring contributions to
precise detection results.

The main contributions of this work are summarized as
follows:

e SRRV combines vision features and relation features
to improve prediction accuracy and learning efficiency.
Especially, RFAN integrates a graph construction module
encoding relevant spatial regions and a graph learning
module aggregating spatial information among document
objects, which then can be propagated at global scale.

« To optimize the usage of visual and relation features, we
design a result refinement network (RRN) to fuse fea-
tures from two different distributions and gain additional
inference.

o We evaluate the proposed method on three public avail-
able datasets. Extensive experimental results reveal that
our proposed method can effectively boost document
object detection performance.

II. RELATED WORK
A. Document Object Detection

Automatic document object detection plays an essential
role in document image understanding and remains an open
problem in image processing and computer vision. It aims to
detect various document components which are of great impor-
tance for numerous application scenes. Early researches focus
heavily on heuristic rules and handcrafted features, which
are difficult to be used on document images with complex
layouts and object contents [28]. In recent decade, due to its
comprehensive feature extraction ability, deep learning based
methods have been introduced to document object detection
area. In ICDAR Page Object Detection Competition (ICDAR-
POD) [29], most competitors applied CNN based methods
and its variances to detect page objects with three categories
including formula, figure and table.

In ICDAR-SLP Competition, document layout recognition
is designated as task A which aims to promote more in-
depth discussion and research. Some submitted methods try
to introduce multimodal frameworks [24]. Team Hikvision
Research Institute proposes VSR integrating both visual in-
formation and natural language model, which makes this team
surpass all participants and rank first. Another team, Tomorrow

Advancing Life utilizes Hybrid Task Cascade for Instance Seg-
mentation method as baseline model and introduces LayoutLM
[30] to optimize each text line. Meanwhile, team Simo adopts
multimodal PDFMiner [31] to extract line coordinates of ‘text’
and ‘title’ for layout prediction refinement.

B. Relation Modeling

It is natural for humans to distinguish objects by using
relation information which inspires researchers to explore
object relation and gain additional inference. For example,
Deng et al. [32] provide a unified framework to improve object
classification by constructing a relation graph between labels.
Li et al. [33] adopt knowledge graphs to describe relationship
between multiple labels. Chen et al. [34] design an iterative
reasoning framework to capture both spatial and semantic
relationship between objects.

However, the above-mentioned methods rely on external
handcraft knowledge graphs which require laborious prepro-
cessing work. Recently, GCN [27] shows impressive learning
power on graph-structured data in various tasks, such as [35]—
[37]. Xu et al. [35] integrate a graph learner module to
encode regional visual features by non-linear transformation
and a spatial graph reasoning module with learnable spatial
Gaussian kernels. Li et al. [36] introduce semantic label co-
occurrence matrices to build edges between nodes which
represent proposals in a heterogeneous graph. Chen et al. [37]
adopt k Nearest Neighbors (kNN) to construct a local region
for a point set, and use subtractions of central point and its
neighbors to express their geometric relationship.

For document image processing, Liu et al. [38] apply GCN
to compute visual embeddings from text segments generated
by in-house Optical Character Recognition (OCR) system.
Zhang et al. [39] utilize geometric attributes to construct local
graphs which establish linkages between different text objects.

Inspired by the above-mentioned works, our goal is to
learn a spatial awareness graph which embeds contextual
information and inherent structural information to perform
relation aggregation via GCN at global scale, and achieve
relational reasoning among document objects.

III. OUR APPROACH

An overview of our proposed SRRV is illustrated in Figure
2. SRRV consists of three subnetworks, including vision fea-
ture extraction network (VFEN), relation feature aggregation
network (RFAN) and result refinement network (RRN). In
Figure 2(a), vision feature extraction network (VFEN) extracts
augmented feature pyramid maps from backbone network, and
generates candidate bounding boxes as region proposals. In
Figure 2(b), relation feature aggregation network (RFAN) in-
cludes graph construction module and graph learning module.
Graph construction module is to embed contextual spatial and
inherent structural information into conventional visual con-
volutional networks. Then, graph learning module aggregates
the relation information on the constructed graph, which is
propagated globally. In Figure 2(c), result refinement network
(RRN) integrates vision features and relation features, and it
is capable of providing relational reasoning for ambiguous
detection results.
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Fig. 2. The overall architecture of SRRV. (a) Vision feature extraction network (VFEN) utilizes backbone network to extract augmented feature maps from the
input image, and then it produces region proposals. (b) Relation feature aggregation network (RFAN) includes graph construction module and graph learning
module. Graph construction module is applied to build a relation graph by capturing spatial-related information among region proposals. Subsequently, graph
learning module promotes information interaction based on the constructed graph, and updates graph embeddings to learn evolved feature representation for
region proposals. (c) Result refinement network (RRN) is to integrate the obtained feature representation, and achieve relational reasoning.

Feature Augment Path

{

C5 (2048,25,25) —l

G5 (2048,25,25) —»
2048,1024

| P5
(1024,50,50) ———2048,1024

FPN

CONV/
Kernel Size:11
Stride:1
&
Interpolate

C4

1 Scale Factor:2

G4 (1024,50,50) —*m—’ 256,256

CONV
1 Kernel Size:3>3
Stride:1

Channel-Concatenate
&

1024,512
| P4
C3 (512,100,100) ——— > 1024.512
G3 (512.100,100)—»“—» 256,256
|

512,256
| P3
C2 (256,200,200) —— > 512,256

G2 (256,200,200)—»“—‘ 256,256

Element-Wise Addition
&

CONV
Kernel Size:3>3
Stride:1

ResNet

Fig. 3. Structural details of backbone network.

A. Vision Feature Extraction Network

To extract powerful visual features from both low-level and
high-level layers, we propose feature augment paths to fuse
multi-level features, as shown in Figure 3.

ResNet [40] is adopted as our basic backbone network.
Feature maps generated by ResNet are denoted as C
{Ck | k € {1,,N}}. Subsequently, to obtain informative fea-
ture maps, feature augment paths are extended to enable
information propagation between feature pyramids. It starts
from the highest level C'y and gradually fuses hierarchical
information by a top-down path. The output feature maps
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G ={Gk | k € {1,,N}} are formulated in (1).
ifk=N
otherwise,

G, = { C(N )
¥ Convy(Cat (Convy (Grg1) » C)),

(D
where Conv; and Conv, are convolutional layers, Cat
is the channel-concatenate operation. Feature Pyramid Net-
work (FPN) [41] takes G {Gr | ke{l,,N}} as in-
put, and outputs semanticly stronger feature maps P
{P: | ke {1,,N}}.

Region Proposal Network (RPN) is applied for region pro-
posal generation. Anchor aspect ratios and strides are adapted
to process document objects with various sizes and scales for
generating candidate bounding boxes, which are formulated as

.

n; = (miathhhi)a (2)
where each region proposal location 1is defined as
(i, yi, wi, h;). Region of Interest Align (RolAlign) is

applied to extract the visual feature representation f from the
detected candidate bounding boxes.

B. Relation Feature Aggregation Network

An overview of our relation feature aggregation network
(RFAN) is illustrated in Figure 4. Specifically, given an
undirected graph G = (V, E), graph node v; € V is associated
with initial features, and graph edge e;; € E shows relation
between pair-wise nodes (v;,v;). Graph construction module
captures relative spatial position and geometric appearance
similarity calculated from region proposals. Graph learning
module learns to update node features through aggregating
spatial-related information from its neighbors and propagating
at global scale on the constructed graph.

1) Graph Construction Module: Given candidate bounding
boxes, a graph is constructed to capture potential spatial and
structure related information existing in document layout. As
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Fig. 4. The structure of relation feature aggregation network (RFAN). Set region proposals as graph nodes. Connected edges reflect adjacent relation between
pair-wise graph nodes. Graph learning is to aggregate and propagate relation information on the constructed graph. Node feature representation could be
updated through recursively passing messages from its neighbors. (red: title, green: text, brown: figure, purple: table, blue: list)
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Fig. 5. (a) The flowchart of Graph Construction Module. Spatial relatedness r;; establishes linkages between region proposals. Then, graph edges e;; are
calculated as the probabilities of pair-wise proposal linkages by normalizing the spatial relatedness r;;. In addition, the constraints imported in Equation (8)
are expected to retain more relevant relationship among proposals and prune noise linkages. Thus, we obtain adjacency matrix A € RN XN of graph G. (b)
A detailed example of the constructed graph.

illustrated in Figure 5(a), the graph construction is imple-
mented among region proposals. For each region proposal
¢ generated by RPN, the center coordinate coord;(z,y) is
calculated using (3).

h

2

coord;(z,y) = (xz + % yi + 3)
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where bounding box (z;,y;,w;, h;) corresponds to the pro-
posal ¢. Subsequently, spatial relatedness r;; is encoded by
measuring the similarity of relative position and shape factor
between pair-wise graph nodes (v;, v;). This can be formulated
as (4)-(6).

Tij = \/Acoordiij + Acoord; ;y?, 4)
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Acoords;z — <coordix B coordjx) ’ 5)
w; w;
d; d;
Acoordyy — coordiy _ coordjy) ©)
h; h;

Then, graph edge e;; is generated by applying normalization
to relatedness r;; with range of 0 to 1, as in (7).
.y
eij = exp(————+————), )
—& rMmMaXgenN Tik

where N is the number of region proposals, and € is a mod-
ulating factor. Considering document page layout properties,
constraints are imposed on the overlapped proposals, which
tend to retain more informative edges and prune noise edges.
It is computed as (8).

Aij =6(4,7) - ey, (3

where A € RN*N s the adjacency matrix, §(i,j) is an
indicator function related to IoU threshold that equals O if
proposal ¢ and proposal j are overlapped with each other, and
otherwise equals to 1. A constructed graph is shown in Figure
5(b).

2) Graph Learning Module: To tackle the graph learning
problem, GCN, as an extension of CNN, is to operate con-
volutional in spectral or spatial domain. Herein, our graph
learning module uses GCN for modeling relation features
and information interaction to update node features. Based
on the constructed graph, GCN takes the initial node features
X € RV*XP and the adjacency matrix A € RVY*N as its
inputs to aggregate relation features with spatial awareness.
To be specific, each GCN layer is to learn a function g on the
constructed graph G, as in (9)-(10):

H' = g(X, A), ©)

H'" = g(H', A), (10)
where H'! is the input and H'*! is the output of the I layer.
After employing the convolutional operation, g can be written
as (11)-(12):

HA — (LH(”WI> , (11)

L=D2ADz, (12)
where o presents the LeakyReLU activation function, wt
is the learned weight transformation matrix, L € RN*Nig the
normalized Laplace, A = A+ is the adjacency matrix of the
constructed graph G with added self-connections, D € RV*¥N

is the degree matrix.

C. Result Refinement Network

Result refinement network (RRN) consists of two modules
including deep fusion module (DFM) and relational reasoning
module (RRM), which will be elaborated.

5

1) Deep Fusion Module: In [42], it claims that different
types of features have different value ranges and distributions,
which motivates us to develop a suitable fusion strategy
to integrate vision features and relation features. Given the
regional visual features f and the relation features H'*!:

f = fe(Cat(H™, f)),

where f is the fused features, C'at is the channel-concatenate
operation, and fc denotes the fully-connected layers liked
Mask R-CNN [17].

2) Relational Reasoning Module: RRM aims to select the
highly spatial-related region proposals. A multi-layer per-
ceptron (MLP) is utilized for encoding the spatial-related
relationship, which generates a score matrix corresponding to
the region proposals. The computation process can be written
as (14):

(13)

HIAL PR (N dy) PR (N dy) -2 (N, ds) — S,

(14
where Linear denotes the linear regression operation, « is the
stgmotd function computing the spatial-related probabilities,
S is the score matrix, di, ds and ds are the output channels.
For the obtained matrix S, a scale factor p is to select
proposals with higher spatial-related probabilities. Refined
region proposals are thus provided for classification and box
regression branches.

IV. EXPERIMENTS

In this section, a series of experiments are conducted to
validate the effectiveness of SRRV on three widely used
datasets including POD, Article Regions and PubLayNet.

A. Datasets and Evaluation Metrics

Three public available and widely used datasets including
POD [29], Article Regions [47] and PubLayNet [48] are
described in detail. PubLayNet is a large-scale dataset for
document layout analysis. It consists of 360K document
images with 5 categories (text, title, list, table, figure), in-
cluding 335,703 training images, 11,245 validation images,
20 mini validation images and 11,405 test images. It adopts
the standard mean average precision (mAP) @ IoU [0.5,0.95]
as evaluation metric. Article Regions [47] consists of 822
document images with 9 categories (title, authors, abstract,
body, figure, figure caption, table, table caption and reference),
and the whole dataset is split into 600 and 222 images for
training and validation. It uses the mAP at IoU threshold 0.5 as
evaluation metric. POD [29], as the ICDAR POD competition
dataset, consists of 2,417 document images with 3 categories
(Formula, Table, Figure), in which 1,600 images are used as
training set and 817 images are used as test set. It adopts the
mAP at two IoU thresholds (0.6 and 0.8) as evaluation metrics.

B. Implementation Details

We implement our proposed SRRV with Pytorch frame-
work. Specifically, three different backbone networks are
extended in SRRV, including ResNet-50, ResNet-101, and
ResNeXt-101-32x8d [49] that are all pre-trained on ImageNet
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED SRRV AND THREE DOCUMENT OBJECT DETECTION METHODS ON PUBLAYNET VALIDATION DATASET.

Method Backbone mAP text title list table figure

CDDOD [43] ResNeXt-32x8d-101 0.922 0.923 0.913 0.913 0.934 0.927

CDeCNet [44] ResNeXt-32x8d-101 0.905 0.915 0.840 0.895 0.969 0.906

VSR [23] ResNeXt 0.957 0.967 0.931 0.947 0.974 0.964

SRRV ResNeXt-32x8d-101 0.950 0.958 0.901 0.950 0.976 0.967

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED SRRV AND FOUR COMMON OBJECT DETECTION METHODS ON PUBLAYNET VALIDATION DATASET.

Method Backbone mAP APs APm APl text title list table figure
Mask R-CNN ResNet-50 0.888 0.374 0.675 0.921 0.908 0.801 0.860 0.950 0.921
ATSS ResNet-50 0.853 0.280 0.617 0.896 0.889 0.754 0.816 0.931 0.876
Cascade R-CNN ResNet-50 0.908 0.365 0.717 0.948 0.909 0.835 0.886 0.969 0.939
Faster R-CNN(Baseline) ResNet-50 0.867 0.364 0.663 0.901 0.895 0.801 0.820 0.920 0.901
SRRV ResNet-50 0.909 0.395 0.686 0.935 0.919 0.840 0.876 0.963 0.947
Mask R-CNN ResNet-101 0.899 0.362 0.729 0.937 0.908 0.830 0.854 0.960 0.941
ATSS ResNet-101 0.865 0.314 0.613 0.905 0.892 0.764 0.840 0.934 0.893
Cascade R-CNN ResNet-101 0914 0.390 0.745 0.951 0.922 0.845 0.886 0.967 0.949
Faster R-CNN(Baseline) ResNet-101 0.880 0.363 0.726 0.913 0.903 0.812 0.834 0.941 0912
SRRV ResNet-101 0.919 0.423 0.762 0.940 0.926 0.849 0.900 0.968 0.953
Mask R-CNN ResNeXt-32x8d-101 0.932 0.456 0.819 0.967 0.930 0.860 0.935 0.973 0.964
ATSS ResNeXt-32x8d-101 0.928 0.406 0.763 0.964 0.937 0.837 0.936 0.974 0.954
Cascade R-CNN ResNeXt-32x8d-101 0.935 0.432 0.829 0.964 0.943 0.875 0.924 0.972 0.935
Faster R-CNN(Baseline) ResNeXt-32x8d-101 0.928 0.457 0.832 0.965 0.929 0.852 0.932 0.965 0.963
SRRV ResNeXt-32x8d-101 0.950 0.470 0.842 0.972 0.958 0.901 0.950 0.976 0.967

[50] to initialize parameters. For RPN, we design 5 scales
and 7 aspect ratios for anchor generation. Each mini-batch is
set to 2, so each GPU has two images and each image has
512 sampled Rols with a positive-negative ratio of 1:3 [51].
We train our SRRV on one Nvidia GTX 2080Ti GPU using
stochastic gradient descent (SGD) with a momentum of 0.9
and weight decay of 0.0001. For backbone ResNet-50, we
train our model for 75k iterations, with an initial learning rate
of 0.0025 which is reduced by a factor of 10 at 40k iterations
and 60k iterations. For backbone ResNet-101, we train our
model for 75.5k iterations, with an initial learning rate of
0.0025 which is reduced by a factor of 10 at 40k iterations and
60k iterations. For backbone ResNeXt-101-32x8d, we train
our model for 270k iterations, with an initial learning rate of
0.0009 which is reduced by a factor of 10 at 210k iterations
and 250k iterations. Specifically, the training model of Article
Regions lasts for 10K iterations using ResNet-101. All of the
experiments are conducted on an unbuntu20.04 workstation
with an Intel(R) Xeon(R) Silver 4210 2.20GHz CPU 64GB
RAM.

C. Results on PubLayNet

PubLayNet is a large-scale dataset consisting of 360K
document images. The ICDAR 2021 competition SLP task
A uses PubLayNet as its competition dataset. VSR [23], as
the winner of this competition, is compared with SRRV in
Table I. VSR [23] integrates both CV based and NLP based
methods, while our proposed SRRV explores the potential of
CV based method itself. In Table I, SRRV achieves 0.950

mAP on PubLayNet validation dataset, which is higher than
CDDOD [43] and CDeCNet [44], and is 0.7% lower than
VSR [23]. But SRRV is superior to VSR [23] on the list,
table and figure categories. While CDDOD [43] and CDeCNet
[44] only focus on extracting vision features, SRRV performs
better by exploring relation features calculated from spatial
relatedness among objects which are further integrated with
vision features. In Table I, it can be observed that SRRV
shows competitive performance on table, figure and list, even
without utilizing multimodal information or additional natural
language information. This indicates that vision information
based deep learning network still has the potential to be
optimized.

Table II shows the performance comparisons of SRRV and
four common object detection methods on different backbones,
including Faster R-CNN [13], Mask R-CNN [17], ATSS [39]
and Cascade R-CNN [52]. When using ResNet-50 and ResNet-
101 as the basic backbone network, SRRV surpasses the
above-mentioned methods. And the performances of SRRV are
improved by 4.2% and 3.9% on mAP compared to the baseline
model, respectively. When using ResNeXt, SRRV outperforms
all the compared methods, by around average 2% higher on
mAP. With three different mainstream backbone networks,
SRRV is able to gain performance improvement steadily.

D. Results on POD

The proposed SRRV is compared with thirteen document
object detection methods in Table III on POD test dataset
to comprehensively analyze the effectiveness of our proposed
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TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED SRRV AND THIRTEEN DOCUMENT OBJECT DETECTION METHODS ON POD TEST DATASET.

Method AP(IoU=0.6) AP(IoU=0.8)
Formula Table Figure mAP Formula Table Figure mAP
NLPR-PAL 0.839 0.933 0.849 0.874 0.816 0.911 0.805 0.844
icstpku 0.849 0.753 0.679 0.760 0.815 0.697 0.597 0.703
FastDetectors 0.474 0.925 0.392 0.597 0.427 0.884 0.365 0.559
Vislnt 0.524 0.914 0.781 0.740 0.117 0.795 0.565 0.492
SOS 0.537 0.931 0.785 0.751 0.109 0.737 0.518 0.455
UITVN 0.193 0.924 0.786 0.634 0.061 0.695 0.554 0.437
Matiai-ee 0.116 0.781 0.325 0.407 0.005 0.626 0.134 0.255
HustVision 0.854 0.938 0.853 0.882 0.293 0.796 0.656 0.582
Li eta [25] 0.878 0.946 0.896 0.907 0.863 0.923 0.854 0.880
FFD [45] 0.897 / 0.886 0.892 0.776 / 0.794 0.785
CDDOD [43] 0.857 0.901 0.821 0.860 0.750 0.825 0.805 0.793
GOD [46] 0.901 0.942 0.841 0.895 0.832 0.924 0.813 0.856
CDeCNet [44] 0.821 0.922 0.884 0.875 0.803 0.915 0.832 0.850
SRRV 0.962 0.963 0.912 0.946 0.951 0.953 0.865 0.923

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED SRRV AND THREE METHODS ON ARTICLE REGIONS VALIDATION DATASET.

Method Backbone title author | abstract | body | figure | figure caption | table | table caption | reference | mAP
CDDOD [43] ResNet-101 | 0.886 | 0.632 0.876 0.933 | 0.829 0.879 0.823 0.696 0.943 0.833
VSR [23] ResNet-101 1 0.940 0.950 0.991 | 0.953 0.945 0.961 0.846 0.923 0.945

Faster R-CNN(Baseline) | ResNet-101 | 0.964 0.66 0.901 098 | 0.932 0.889 0.945 0.671 0.901 0.871
SRRV ResNet-101 | 0.959 | 0.858 0.992 0.990 | 0.935 0.970 0.951 0.878 0.999 0.948

method. SRRV has achieved higher accuracy than the thirteen
compared methods. Furthermore, when IoU threshold takes
the value of 0.8, the performance on formulation category
obtains a significant improvement, which is 8.8% higher than
Li et al. [25]. This demonstrates that SRRV is capable of
boosting the accuracy of small document object detection
(such as formulation category in POD) by aggregating relation
information at global scale.

E. Results on Article Regions

Article Regions consists of nine categories, where inter-
classed relation is more complicated. In Table IV, SRRV
outperforms all the compared methods on mAP. Especially on
reference category, SRRV is nearly 10% higher than VSR [23].
It is attributed to the encoded spatial relation and relational
reasoning. Compared with CDDOD [43], SRRV performs
better by making use of the contextual spatial information
among objects within a document page, such as the pair-wise
figure and figure caption, table and table caption.

In Figure 6, qualitative examples of SRRV, Faster R-CNN
[13] and CDDOD [43] are illustrated. In Figure 6 (c-3) and
(c-4), the yellow table caption below the purple table is
misclassified as figure caption. From Figure 6 (c-2), we can
observe that our method SRRV detects these objects correctly.
Furthermore, some imprecise boxes overlaid with each other
can be spotted in Figure 6 (a-4) and (c-4). In this case,
SRRV obtains higher precision of box regression with the
contribution of refined proposals. In Figure 6 (b-3) and (b-

GT Ours Faster R-CNN CDDOD

@2) @3) (@)

(b-1) (b-2) (b-3) (b-4)

sl o* ull

(c-1) (©2) (c-3) (c-4)

~ Body Figure Figure caption [/ Table] Table caption Reference

Fig. 6. Qualitative results of the proposed SRRV and the compared methods
on Article Regions.

4), a brown figure box is not detected by CDDOD [43] and
Faster R-CNN, but SRRV is able to identify.
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TABLE V

ABLATION STUDY BASED ON DIFFERENT SUBNETWORKS OF SRRV ON POD TEST DATASET.

VFEN | RFAN | RRN | Datasets AP(oU=06) AP(oU=038)
Formula | Table | Figure | mAP | Formula | Table | Figure | mAP
POD 0.938 0.943 | 0.870 | 0917 0.903 0913 | 0.839 | 0.885
V4 POD 0.942 0946 | 0911 | 0.933 0.918 0914 | 0.846 | 0.893
Vv POD 0.958 0.952 | 0.909 | 0.940 0.942 0.935 | 0.846 | 0.908
V4 Vv POD 0.957 0.956 | 0.910 | 0.941 0.943 0945 | 0.842 | 0910
v Vv v POD 0.962 0.963 | 0.912 | 0.946 0.951 0.953 | 0.865 | 0.923

TABLE VI TABLE VII

ABLATION STUDY BASED ON DIFFERENT SUBNETWORKS OF SRRV ON
PUBLAYNET VALIDATION DATASET.

VEEN | RFAN | RRN | Datasets | mAP | APs | APm | APl
PubLayNet | 0.880 | 0.363 | 0.726 | 0.913

v PubLayNet | 0.901 | 0.378 | 0.748 | 0.946
v PubLayNet | 0.913 | 0.403 | 0.753 | 0.953

v v PubLayNet | 0.915 | 0.406 | 0.803 | 0.945
v v V| PubLayNet | 0.919 | 0.423 | 0.762 | 0.946

F. Ablation Study

Herein, we conduct comprehensive ablation studies to in-
vestigate the performance of the subnetworks in SRRV. Table
V and Table VI show the effectiveness of different subnet-
works (VFEN, RFAN and RRN) on POD test and PubLayNet
validation dataset, respectively.

1) Effectiveness of Vision Feature Extraction Network
(VFEN): Compared with the baseline model Faster R-CNN,
RFAN boosts the detection performance from 0.880 to 0.901
mAP on PubLayNet validation dataset. And it obtains similar
improvements on POD test dataset. This could be attributed to
that our proposed feature augment paths are able to advance
feature extraction ability of basic backbone network.

2) Effectiveness of Relation Feature Aggregation Network
(RFAN): RFAN is the most important subnetwork of our
proposed SRRV. In Table V, when the IoU threshold takes
the value of 0.8, RFAN achieves 0.908 mAP which is 2.3%
higher than Faster R-CNN. In Table VI, results on PubLayNet
show that RFAN achieves 0.913 mAP and 0.403 APs, which
are respective 3.3% and 4% higher than the baseline model.
The experimental results indicate the importance of encoding
spatial relation among document objects and propagating
relation information at global scale.

3) Effectiveness of Result Refinement Network (RRN): In
this part, we mainly discuss how to leverage vision features
and relation features. From Table V and Table VI, our model
equipped with VFEN and RFAN could improve document
object detection to some extent. But our full model (equipped
with VFEN, RFAN and RRN) yields further improvement.
RRN includes a deep fusion module (DFM) integrating fea-
tures from the VFEN and RFAN subnetworks and a relational
reasoning module (RRM) achieving relational reasoning. To
assess the importance of DFM and RRM, we evaluate the
effectiveness of different feature fusion strategies in DFM and
different values of scale factor p in RRM.

EFFECTS OF DIFFERENT FEATURE FUSION STRATEGIES ON ARTICLE
REGIONS VALIDATION DATASET.

method Datasets mAP
element-wise concatenation | Article Regions | 0.929
element-wise addition Article Regions | 0.927
DFM Article Regions | 0.940

a) Effectiveness of Deep Fusion Module (DFM): In
Table VII, three types of concatenation methods are im-
plemented. As can be seen, the performance of DFM is
higher than the element-wise concatenation and element-wise
addition with 0.11 and 0.13 mAP, respectively.

~ mAP
.
|

+— result on PublayNet

—e— result on POD2017 (10U=0.6)
—e— result on POD2017 (IoU=0.8)

factor

) 0 5 ) o) o
different value: factor different values of the sc:

(a) Comparisons on PubLayNet. (b) Comparisons on POD.

Fig. 7. Accuracy comparisons with different values of p.

b) Effectiveness of Relational Reasoning Module (RRM):
Set scale factor p ranging from 0.1 to 0.6. In Figure 7, We can
see that when p = 0.5 SRRV achieves best performance on
both PubLayNet and POD. This could be attributed to the fact
that some redundant candidate bounding boxes of low spatial
relatedness probability have been pruned. However, when the
scale factor is too strict, the accuracy drops quickly since the
target bounding boxes of high spatial relatedness probability
could be filtered out.

Figure 8 depicts the qualitative comparisons of RFAN with
the baseline model Faster R-CNN on PubLayNet validation
dataset. Especially, the constructed graph structure from RFAN
is visualized in Figure 8(a-2), (b-2), (c-2) and (d-2). The
centroids of regions are connected by the calculated graph
edges. Edge thickness corresponds to the scaled edge weights.
In Figure 8(a-1), the text region in bottom-right of the page is
undetected. RFAN could guide the detector by strong linkages
between the text region and its neighbors. Thus, the undetected
problem is alleviated. Among three blue list objects in Figure
8(b-1), two of them are misclassified by using the baseline
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Fig. 8. Qualitative results of the proposed RFAN and the baseline model on PubLayNet. The centroids of regions are connected by the calculated graph

edges. Edge thickness corresponds to the scaled edge weights.
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Fig. 9. Accuracy comparisons with different depths of GCN layer.

model without relation embedding. In Figure 8(b-2), these
lists with high spatial similarities are connected obviously by
the graph edges. After aggregating relation information, their
feature representation thus is enhanced, which might enable
RFAN to covert the imprecise prediction. In Figure 8(c-1)
and (d-1), baseline Faster R-CNN suffers from overlap issue.
RFAN enables the graph learning module to propagate the
global spatial information among region proposals. Moreover,
the imported constraints would retain informative edges and
the detection results are less likely to have overlaps.

4) Effectiveness of Different Depths of GCN: An important
reason behind the great success of CNN is the degradation
problem has been solved, which makes deep CNN to be
reliably trained. However, it is not suitable to stack more
GCN layers due to over-smoothing problem [53]. To discuss
the depth of GCN, an ablation study is given to analyze
its effectiveness. In Figure 9, the performance increases to
optimal point at 4 stacked layers. To further deepen GCN

layers is likely to deteriorate performance.

G. Computation Efficiency Analysis

To evaluate the computation efficiency of SRRV, we in-
vestigate the average running-time of our method SRRV,
CDDOD and CDeCNet on PubLayNet validation dataset.
SRRV takes an average of 0.195 second to process one image
with 1333 <800 resolution, which is slower than the compared
methods. But, SRRV gains better accuracy with reasonable
sacrifice on speed.

To further explore computation time distribution, we cal-
culate the consumption time of each designed subnetwork of
SRRYV, including vision feature extraction network (VFEN),
relation feature aggregation network (RFAN) and result refine-
ment network (RRN). RFAN seems to be a bottleneck since
it consumes most of the computation time, which consists of
graph construction module and graph learning module. SRRV
aims to learn a dynamic learnable graph for each image which
might inevitably bring additional computation cost. In the fu-
ture, the graph construction could be accelerated by designing
faster computation algorithms, and the graph learning should
be optimized to reduce computational complexity.

V. CONCLUSION

A novel document object detection method SRRV is pro-
posed to optimize the performance of unimodal visual con-
volutional network by embedding spatial relation information.
To begin with, vision feature extraction network is to extract
more informative vision features by feature augment paths.
Then, relation feature aggregation network combines graph
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construction module and graph learning module. Graph con-
struction module calculates spatial information from geometric
attributes to encode relationship. While graph learning module
stacks GCN layers to aggregate relation information propa-
gated among objects at global scale. At last, result refinement
network includes deep fusion module integrating the features
from two different distributions effectively and relational rea-
soning module for relational inference to bring contributions
to filter the ambiguous results. Extensive experimental results
demonstrate the importance of relation information extraction,
which improves the document object detection accuracy and
simultaneously benefits small object detection. In comparison
with state-of-the-art methods, SRRV has more effective and
robust performances on three widely used datasets.
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